基于改进VMD的滚动轴承故障诊断
为了降低环境噪声对滚动轴承故障特征信息提取结果的影响,并且提高诊断的准备率,提出了基于改进VMD的滚动轴承故障特征提取方法。首先应用VMD算法对采集的轴承原始信号进行分解,根据能量差曲线确定最佳的分解层数k;然后依据峭度准则,选取峭度值最大的分量作为敏感分量进行后续的分析,最后采用Hilbert算法对选取分量进行解调分析;从最后得到的谱图中便可准确地提取到故障特征频率。通过对仿真和实验室信号的分析,证明了改进VMD算法的有效性与可行性。
基于CEEMD与MCKD的滚动轴承早期故障诊断
针对滚动轴承早期故障信号中冲击成分能量低,背景噪声干扰严重的问题,提出了基于CEEMD与MCKD的故障诊断方法。首先,应用CEEMD方法对故障振动信号进行分解,依据相关系数准则从分解结果中选取敏感分量;然后,采用MCKD算法对所选取分量信号进行降噪并应用Hilbert算法对降噪后信号进行解调处理,从包络谱中提取故障特征信息;最后,通过仿真信号和轴承试验数据进行诊断分析验证了该方法的有效性。
-
共1页/2条