基于PCA和SVM的管道腐蚀超声内检测
为了有效地对不同深度的局部腐蚀缺陷超声波信号进行分类识别,根据腐蚀缺陷信号样本数量较少的特点,提出了一种基于主成分分析(PCA)和支持向量机(SVM)的超声波腐蚀缺陷信号识别方法。该方法采用经验模态分解法对腐蚀缺陷信号进行分解,提取各本征模式分量的时域无量纲参数,利用主成分分析消除原始特征集中的冗余信息,降低每一个特征之间的相关性,实现腐蚀缺陷信号特征参数的降维。在PCA进行特征优化后,将支持向量机的多类分类应用于缺陷分类过程中。将腐蚀缺陷原始特征集和经主成分分析优化后的特征集,分别用于支持向量机的训练和测试,且选择不同的核函数构造支持向量
-
共1页/1条