数控机床主轴热误差的数据驱动模型研究
当实际工况与建模工况存在差异时,传统的热误差模型往往表现出较差的鲁棒性和预测精度。主要原因在于建模数据的局限性和模型的未建模动态。为了改善上述状况,提出了一种基于数据驱动的数控机床主轴补偿模型。此模型采用无模型自适应控制算法建模,结合机床运行中生成的数据(温度数据和误差数据)对热误差模型进行实时修正,使模型能快速适应新的加工工况,从而提高模型的鲁棒性。在一台数控车床主轴上进行了试验验证。结果表明:无模型自适应控制与多元回归模型比较,其标准差、最大残差和误差平方和分别提高了41%、62%和56%,此模型的鲁棒性和预测效果好。同时,此方法为大数据在机床主轴热误差补偿中的应用奠定了基础。
-
共1页/1条