基于改进PSO-SVR的连杆机构可靠度敏感性研究
为提高连杆机构的运动精度可靠性,提出一种利用多体动力学和支持向量回归(Support Vector Regression,SVR)算法构建机构的运动模型并对其进行可靠度敏感性分析的方法。通过引入粒子群优化(Particle Swarm Optimization,PSO)算法对SVR的惩罚参数和核函数参数进行寻优,提高SVR的回归预测精度。为克服PSO容易早熟和搜索精度低等缺点,对惯性权重系数和学习因子进行改进,应用改进算法与标准PSO-SVR算法并结合蒙特卡洛模拟对四杆机构的可靠度敏感性进行分析研究。通过实验对比表明,改进的算法收敛速度更快、回归预测精度更加接近于蒙特卡洛模拟,且计算速度优于蒙特卡洛模拟。
基于改进NSGA-Ⅱ算法的发动机活塞机构优化设计
为提高发动机活塞机构的运动性能,提出了以最小跟踪误差和传动角与直角的偏差最小为优化目标,建立发动机活塞机构多目标优化模型,引入NSGA-Ⅱ算法对活塞机构进行多目标优化。为提高NSGA-Ⅱ算法的种群的多样性和搜索能力,对交叉算子和变异算子进行改进,应用NSGA-Ⅱ算法与改进算法对发动机活塞机构优化问题进行求解,分别得到各自的Pareto解集,并通过逼近理想解排序法选出最优解进行对比。通过实验对比表明,改进算法的Pareto解集分别更均匀、收敛速度快、跟踪误差更小,能为发动机活塞机构的优化设计提供参考依据。
-
共1页/2条