基于自回归滑动平均最小熵反褶积的滚动轴承故障诊断
滚动轴承的时域故障信号含有工作部件或轴承元件间微弱碰撞产生非周期性冲击以及工况噪声成分,造成信号中表征故障信息的周期冲击成分难以提取,无法准确有效的对滚动轴承进行故障诊断。针对这一问题,提出自回归滑动平均最小熵反褶积方法。通过自回归滑动平均模型和最小熵反褶积计算得出正逆两组滤波器系数,其中自回归滑动平均模型计算出的滤波器系数用于分离故障信号中的非周期冲击成分,最小熵反褶积计算出的逆滤波器系数用于恢复故障冲击成分。通过仿真和实验的处理结果证明了方法的有效性。
基于改进VMD与包络导数能量算子的滚动轴承早期故障诊断
针对滚动轴承早期故障比较微弱,特征信息难以提取且变分模态分解(VMD)中分解层数k的大小需要使用者反复尝试而不能有效确定的问题,提出了改进的VMD方法,以能量差作为评价参数自适应地确定分解层数k。在此基础上,将改进的VMD与包络导数能量算子结合,提出了VMD与包络导数能量算子的轴承早期故障诊断方法。采用VMD对轴承故障振动信号进行分解,根据能量差曲线确定最佳的分解层数k;依据峭度准则,从分解得到的k个本征模态分量中选取敏感分量进行重构;并用包络导数能量算子对重构信号进行解调分析,从其能量谱中便可准确地提取轴承的故障特征信息。通过仿真信号和实验数据的分析,验证了该方法的有效性与可行性。
基于VMD和MED的滚动轴承微弱故障特征提取
针对强噪声环境下滚动轴承故障特征信息非常微弱且难以提取的问题,提出基于变分模态分解(Variational Mode Decomposition,VMD)和最小熵解卷积(Minimum Entropy Deconvolution,MED)的滚动轴承微弱故障特征提取方法。基于VMD和MED的滚动轴承微弱故障特征提取方法首先采用VMD对滚动轴承故障信号进行分解,得到多个模态分量,由于噪声的干扰,很难从各个模态分量中提取有效的故障特征信息;然后根据相关系数准则,选取与原始信号相关系数较大的模态分量进行重构,再对重构后的信号进行MED降噪处理;最后对降噪处理后的信号进行Hilbert包络解调,从得出的包络谱中即可准确地提取到故障特征信息。轴承故障实验信号处理结果表明,该方法可以有效地降低噪声的影响,精确地提取滚动轴承微弱的故障特征信息。
基于LMD和MCKD的滚动轴承早期故障诊断
滚动轴承故障产生的初期,信号中的冲击成分受到严重的噪声干扰,导致故障信号的周期特征难以提取。针对这一问题,提出基于局部均值分解(LMD)算法和最大相关峭度反褶积(MCKD)算法结合的滚动轴承早期故障诊断方法。首先应用LMD算法对轴承早期故障信号进行自适应分解,选取与原始信号相关系数较大的乘积函数(PF)分量进行重构;然后应用MCKD算法对重构信号进行降噪,突出周期冲击成分;最后对消噪后的信号进行Hilbert包络处理,从包络谱中即可准确地获取故障特征频率。通过对仿真信号和内圈故障实验信号的分析,证明了该方法的有效性。
-
共1页/4条