基于SC28L198的多串口服务器设计
针对许多设备不具备网络接口的问题,以ARM7 Cortex-M3处理器LM8962为核心构建嵌入式系统,利用SC28L198芯片扩展8个串口,完成基于μC/OS-II操作系统和TCP/IP协议的多串口服务器设计。该系统能够同时为8个串口设备提供以太网远程数据传输,为具有串行通信接口设备的网络控制提供了条件,实现了计算机远程监控。
KTA-KELM在滚动轴承故障诊断中的应用
在数据驱动的滚动轴承状态辨识模型构建过程中,针对核极限学习机(Kernel Extreme Learning Machine,KELM)算法中高斯核函数的径向宽度参数σ选取不当极易造成模型分类精度差的问题,提出一种核排列优选核参数σ的滚动轴承状态辨识方法。首先,将测取滚动轴承振动信号经总体局部均值分解(Ensemble Local Mean Decomposition,ELMD)进行分解并计算其能量熵、排列熵来构建高维的特征向量集;然后,初始化核排列(K ernel Target Alignment,KTA)算法参数:最大核排列值Ai和核参数σi,通过判断核矩阵与理想目标矩阵间距离来调节不同的Ai和σi值,来获取两矩阵距离最短时所对应的Ai,此时核参数σi最优。最后,将上述滚动轴承的高维特征向量集作为输入通过KTA-KELM算法的学习,建立基于KTA-KELM的滚动轴承的状态辨识模型。仿真实验结果表明,与KELM、ELM算法相比,KTA-KELM算法将滚动轴承状态辨识的精...
EMPE和KP-KELM在行星齿轮箱故障诊断中的应用
针对非线性、非平稳的行星齿轮箱振动信号故障特征"难提取"和基于核参数随机生成的高斯核极限学习机状态辨识模型分类精度低的问题,提出一种改进多尺度排列熵(Enhence Multi-scale Permutation Entropy,EMPE)与核极化高斯核极限学习机(Kernel Extreme Learning Machine,KELM)结合的行星齿轮箱状态辨识方法。首先,将经由形态平均滤波的行星齿轮箱行星齿轮的振动信号,借助于EMPE来获取多尺度下的排列熵值(Permutation Entropy,PE)构建高维特征向量集;其次,利用核极化(Kernel Polarization,KP)优化高斯核极限学习机的核参数σ;最后,将EMPE特征向量集作为输入,通过KP优化KELM算法的训练建立行星齿轮状态辨识模型。实验结果表明,与基于SVM和KELM的状态辨识模型相比,基于EMPE和KP-KELM的行星齿轮故障诊断方法具有更高的分类精度。
-
共1页/3条