基于神经网络的跨音速非定常气动力的辨识
利用递归神经网络(RNN)模型具有时间记忆性,且会考虑之前的输入输出对当前输出影响的特点,以递归神经网络方法建立了NACA0012翼型在跨音速阶段的非定常气动力模型;利用CFD计算NACA0012翼型绕其刚心作变频俯仰运动的跨音速气动力系数为训练数据,建立跨音速非定常气动力模型。以建立的跨音速非定常气动力模型预测NACA0012翼型作俯仰简谐振动的气动力系数,并与CFD计算的气动力系数进行对比。结果表明,该模型具备优良的逼近非线性非定常气动力的能力;针对跨音速二维翼型,该模型相比CFD可以更快速地构建,并能迅速且较为准确地预测不同频率下作简谐振动时的气动力。
-
共1页/1条