一种乳化液泵分级故障诊断方法
针对乳化液泵故障机理复杂、故障诊断难的现状,提出一种乳化液泵分级故障诊断方法。首先,通过深度自编码网络(Deep Auto-Encoder Network,DAEN)实现乳化液泵故障的第一级诊断,以乳化液泵的14个特征参数作为输入,自适应特征学习,识别故障形式;然后,通过专家系统实现乳化液泵故障的第二级诊断,将已识别的故障形式与必要故障信息作为专家系统输入,得到明确的故障定位。实验表明,深度自编码网络平均准确率98.712%,优于深度神经网络和卷积神经网络,可靠性高,可以完成第一级诊断任务,然后通过专家系统完成第二级诊断任务,分析产生原因,操作简单。将该方法编制成后台可运行的程序,嵌入煤矿综采工作面智慧云平台。经过实际测试,该故障分级诊断方法能够快速有效定位故障位置,提高诊断精度。
-
共1页/1条