碧波液压网 欢迎你,游客。 登录 注册

基于量子遗传算法的轴向柱塞泵故障特征选择

作者: 李胜 张培林 李兵 王国德 来源:中国机械工程 日期: 2020-07-09 人气:90
基于量子遗传算法的轴向柱塞泵故障特征选择
为了进一步减少特征维数、缩短运算时间、提高分类正确率等,提出了一种基于量子遗传算法的轴向柱塞泵故障特征选择方法,该方法采用量子位进行染色体编码,利用量子门更新种群。首先,对轴向柱塞泵振动信号进行小波包变换,提取出原始信号和各个小波包系数的统计特征;然后,利用量子遗传算法从原始特征集中选择出最优特征集;最后,以神经网络为分类器(其输入为最优特征集),对故障进行诊断与识别。利用该方法对轴向柱塞泵正常、缸体与配流盘磨损和柱塞滑履松动三种状态的特征集进行选择,试验结果表明,与普通遗传算法相比,量子遗传算法可以更有效地减少特征维数,提高分类正确率。

基于改进型AdaBoost算法的轴向柱塞泵故障特征信息的分类诊断

作者: 张培林 李胜 吴定海 王国德 来源:机床与液压 日期: 2020-01-02 人气:162
基于改进型AdaBoost算法的轴向柱塞泵故障特征信息的分类诊断
对轴向柱塞泵故障特征信息的研究有助于辅助完成轴向柱塞泵故障类型的鉴别和分类。从轴向柱塞泵的所有故障中,选出两种典型故障:缸体与配流盘磨损、柱塞滑履松动。从轴向柱塞泵原始振动信号中提取这两种故障特征的数据,经过小波包变换、数学变换以及遗传算法和偏最小二乘回归相结合(GA—PLS)特征选择后,确定最优的故障特征集。为了解决训练时间较长及权重调整过适应等问题,提出一种基于均匀分布权重和指数损失函数的改进型AdaBoost算法。分别使用AdaBoostM1,改进型AdaBoost构建分类模型比较其分类效果。结果表明:改进型AdaBoost使用仅含有少量的特征组成的最优特征集,可以得到较好的分类结果。
    共1页/2条