电液伺服阀动态特征信息在线提取方法的研究
电液伺服阀是电液伺服控制中的关键元件,其性能关系到整个伺服系统的控制精度和响应速度。当前,伺服阀的故障诊断仍以离线为主,缺乏在线诊断的有效手段。根据伺服阀的工作特性,提出一种反映伺服阀动态特征的状态信号选取方法;通过对伺服阀阀芯开口度进行时频联合分析,结合所选取的伺服阀特征参数,提取出反映伺服阀动态特征信息的特征向量;采用粗糙集理论对特征量进行约简以提高在线诊断效率。基于人工神经网络的伺服阀性能在线诊断的实验结果表明所提取的特征向量能够准确反映伺服阀动态特征信息,有效判断伺服阀的异常状态,为电液伺服阀的在线故障诊断提供了参考。
电液伺服阀动态特征信息在线提取方法的研究
电液伺服阀是电液伺服控制中的关键元件,其性能关系到整个伺服系统的控制精度和响应速度。当前,伺服阀的故障诊断仍以离线为主,缺乏在线诊断的有效手段。根据伺服阀的工作特性,提出一种反映伺服阀动态特征的状态信号选取方法;通过对伺服阀阀芯开口度进行时频联合分析,结合所选取的伺服阀特征参数,提取出反映伺服阀动态特征信息的特征向量;采用粗糙集理论对特征量进行约简以提高在线诊断效率。基于人工神经网络的伺服阀性能在线诊断的实验结果表明:所提取的特征向量能够准确反映伺服阀动态特征信息,有效判断伺服阀的异常状态,为电液伺服阀的在线故障诊断提供了参考。
-
共1页/2条