PSO-GA优化ELM的高炉铁水硅含量预测
针对高炉冶炼过程的复杂、多变以及非线性等因素,提出了一种基于粒子群算法(Particleswarmoptimization,PSO)和遗传算法(Geneticalgorithm,GA)相结合来优化极限学习机(Extremelearningmachine,ELM)的高炉铁水硅含量预测模型。PSO-GA-ELM预测模型,主要是在PSO算法进行适应度值计算、粒子的速度更新和位置更新时将GA算法中的选择、交叉和变异等操作融入其中,使其输出最优的连接权值和阈值代入到ELM模型中。通过对4种不同的预测模型进行实验验证,结果表明,优化后的PSO-GA-ELM模型在进行铁水硅含量预测时的预测精度、学习能力和泛化性能均高于其他三种预测模型。
-
共1页/1条