HFC125/HCs二元混合工质理论制冷循环性能分析
利用NIST REFPROP数据库计算HFC125/HCs(包括丙烷、丁烷、异丁烷)三类二元混合工质的热力学性质,并对其理论制冷循环性能进行分析计算,筛选出最佳配比。结果显示其理论循环性能比HCFC22高16.9%,并且压缩机排气温度也有所降低。
双效双重热化学吸附制冷性能实验研究
建立了基于吸附.再吸附原理和内部回热技术的双效双重热化学吸附制冷实验系统,对其可行性及工作性能进行了实验研究。测试结果表明:双效双重热化学吸附制冷热力循环技术用于制冷空调领域是完全可行的,在每次循环过程中由外界热源输入一次高温解吸热叮实现四次冷量输出;当采用NiCl2为高温盐吸附剂、MnCl2为中温盐吸附剂、BaCl2为低温盐吸附剂、NH,为制冷剂时,在加热温度为265℃、制冷温度为15℃、冷却温度为30℃的工况下,双效双重热化学吸附制冷循环的COP达到1.1。在此基础上分析了吸附制冷阶段和再吸附制冷阶段冷量输出过程的制冷功率变化特性,发现再吸附过程吸附反应强于吸附反应。
两相流喷射器流动模型研究
研究了压缩/喷射制冷系统中两相流喷射器内的射流发展过程,沿喷射器内部射流的流动方向分段对射流压力调整过程、射流混合、均匀过程和扩压过程进行建模,得到喷射器的引射比和出口背压随冷凝温度与蒸发温度的变化特性。模型的预测结果与实验测试结果在变化趋势上完全一致,压缩/喷射制冷循环中的冷凝温度越大,喷射器的引射比和出口背压越大,节能效果越好;蒸发温度存在一个最佳值,使得引射比最大,出口背压增大效果较好。
两级双效溴化锂制冷-热泵复合循环
在热电冷联产系统中,溴化锂吸收式制冷机在制冷过程中排放了大量的废热,这些废热品味低,难以直接回收利用。在此提出了两级双效溴化锂制冷-热泵复合循环,该循环具有冷凝温度较高的特点,便于直接回收冷凝排放热。系统以背压汽轮机的背压蒸汽为热源,制冷的同时利用循环所排出的废热加热锅炉补充水至较高温度。以具有相同功效的双效溴冷机与单效溴化锂热泵联合运行作为对比循环,制冷-热泵复合循环系统省去了一台蒸发器与冷凝器,减少了两个换热温差,并且通过热力计算、能量分析和分析表明,该循环的能量利用率与效率均有很大的提高,效率比对比循环提高了45%。
跨临界CO2两相流引射制冷系统性能实验研究
对跨临界CO2两相流引射制冷系统性能进行了实验,分析了工况及引射器几何参数对系统性能的影响,结果表明:在实验工况范围内,跨临界CO2两相流引射制冷系统制冷量和COP随气体冷却器压力的升高而升高,随气体冷却器出口温度的升高而降低。对于使用不同喉部直径喷嘴的系统,在相同工况下,引射器喷嘴喉部直径较大的系统的性能较好。对于使用不同直径混合室的系统,随着气体冷却器压力的升高,使用小直径混合室的系统COP变化较大;当气体冷却器压力较低时,使用大直径混合室的系统COP较高,而当气体冷却器压力较高时,使用小混合室直径的系统性能较好。在相同工况下,与传统跨临界CO2循环进行比较,两相流引射制冷循环系统COP最大可提高14%。
溴化锂风冷垂直降膜吸收过程数值模拟
通过对溴化锂溶液在降膜吸收过程中传热、传质特性的分析,建立了垂直降膜吸收过程的数学模型。在这个模型中,考虑了对流及变膜厚等因素对传热、传质性能的影响。并对风冷垂直管降膜吸收过程进行了数值模拟。得出的结论对垂直降膜吸收器的设计和优化具有指导意义。
两种回热型NH_3-H_2O-LiBr吸收式制冷机的实验研究
为了提高无回热器氨-水-溴化锂吸收式制冷实验样机的性能,实验首次提出了单回热器型和双回热器型氨-水-溴化锂吸收式制冷机的概念,并对两种实验样机分别进行了实验研究。实验结果表明,对于单回热器系统,溴化锂的加入大大降低了发生过程中的发生压力,对系统的安全性有利。但是由于吸收器和回热器的直接连通,导致回热器温度高于35℃时,随着回热温度的上升,吸收器压力急剧升高,制冷效果恶化。对于双回热器系统,结构的改进有效地解决了单回热器系统存在的问题,很好地实现了回热功能。相比于无回热器氨-水-溴化锂吸收式制冷实验样机,制冷系数得到明显的提高。在氨质量分数为50%,溴化锂质量分数为15%的情况下,系统的性能系数从无回热器的0.276提高到0.457,增幅达65.35%。
涡旋式水源热泵系统性能仿真
为了预测涡旋式水源热泵系统变结构和变工况稳态性能,建立了稳态涡旋式热泵系统仿真模型。其中涡旋式压缩机模型考虑了吸、排气换热对工质流量和排气温度的影响以及流量、排气温度和输入功率三者的耦合关系;通过增加电子膨胀阀开度对蒸发器出口过热度的控制模型,反映了过热度对膨胀阀流量的影响。系统算法综合了顺序模块法和连续迭代法,改善了迭代收敛性,且易于实现部件模型的模块化。与实验结果对比表明:模型预测值与实验值的误差小于4.4%。
一种五级自动复叠制冷系统的初步试验研究
提出了一种五级自动复叠制冷循环,根据不同的系统采用不同的制冷工质和不同的混合配比,可以获得不同的蒸发温度,分析了非共沸混合工质的组分选取原则并选取了组分,探讨了适用于自动复叠制冷系统混合工质计算的方法,根据要求选择了R22、R23、R14、R740和R728五种制冷工质作为系统循环工质,对混合工质的配比进行了模拟计算,得出了理论模拟最优配比并通过试验研究加以比较确定。
蒸气压缩式制冷系统压力试验的研究与应用
通过对蒸气压缩式制冷系统现场检漏的观测,发现保压试验满足国家标准GB50274-98《制冷设备、空气分离设备安装工程施工及验收规范》的合格判据时,发泡试验还有检出漏孔的可能。针对这一现象,对发泡和保压试验的不同作用,以及"GB50274-98"关于保压试验的漏率判据进行分析。结果表明,"GB50274-98"关于测定压力降不大于试验压力值的1%为合格的相对漏率判据对系统整体泄漏的限制要求偏低,也不能有效控制大容积被测系统粗漏漏孔的出现几率。进一步研究指出,通过保压试验可以直接评价系统整体漏率和对制冷系统运行中的制冷剂非事故耗损进行评估。同时提出现场保压试验应提高压力表精度和延长保压时间,以获得更准确的试验数据。研究可为提高制冷系统现场检漏质量和改进评定方法提供参考。