过失速机动的AUKF-WNN气动力建模及仿真
为使所建立的气动力模型能够准确刻画复杂动态特性,提出一种基于改进UKF算法的小波神经网络(Wavelet Neural Network,WNN)飞行数据失速气动力建模方法。引入一种自适应因子来改善无迹卡尔曼滤波(Unscented Kalman Filter,UKF)算法的性能;按照飞行数据的气动力建模流程,利用改进UKF算法对WNN参数进行最优化估计,构建失速现象的气动力模型。实验结果表明,针对飞行器失速的气动力建模问题,基于改进UKF算法的WNN建模方法,在建模精度和速度方面,优于传统神经网络和其他现有WNN方法,因此,使用提出飞行器失速的气动力建模方法是可行和有效的,得到预测结果也能准确刻画飞行器失速的动态特性。
-
共1页/1条