基于LSTM神经网络模型的液压管路故障诊断方法
在航空发动机液压管路故障信号中,因含有噪声的干扰,导致针对液压管路故障的识别准确率较低,为此,提出了一种基于长短期记忆(LSTM)神经网络的航空液压管路故障诊断方法。首先,采集了航空发动机液压管路故障的振动信号,根据管路信号的特点设计并确定了LSTM模型;然后,开展了实例分析,将采集的液压管路原始振动信号加入了高斯噪声,并创建成液压管路数据集,利用所建长短期记忆神经网络模型对液压管路数据集进行了时序信息融合;最后,针对液压管路不同的故障情况,采用LSTM神经网络模型与循环神经网络(RNN)、卷积神经网络(CNN)、支持向量机(SVM)和反向传播神经网络(BPNN)等模型,进行了对比分析,验证了LSTM模型对航空液压管路故障分类的可行性和有效性。研究结果表明:在识别故障管路精度上,LSTM神经网络模型明显优于SVM和BPNN等传统的浅层神经网络模型;...
-
共1页/1条