碧波液压网 欢迎你,游客。 登录 注册

基于孪生网络结构的轴承故障诊断研究

作者: 赵志宏 吴冬冬 来源:机床与液压 日期: 2024-12-17 人气:85
基于孪生网络结构的轴承故障诊断研究
针对轴承故障诊断中故障样本稀缺、深度神经网络模型在小样本条件下存在故障诊断准确度较低的问题,提出将深度神经网络扩展为孪生网络结构的框架,以提高在小样本条件下的故障诊断性能。孪生网络通过权值共享的骨干网络从样本对中提取特征,采用L1距离判定样本对的特征相似度,实现轴承故障诊断。不同于传统深度神经网络,孪生网络采取输入样本对的方法,在故障数据不足的情况下,可以提高轴承故障诊断性能。分别将不同层数的卷积神经网络(CNN)与长短期记忆网络(LSTM)扩展为孪生网络结构,在实测轴承数据集上进行小样本故障诊断实验。实验结果表明,通过扩展为孪生网络结构可以提高故障诊断结果的准确率,孪生CNN网络比对应的CNN网络准确率平均提高1.08%,孪生LSTM网络比对应的LSTM网络准确率平均提高4.78%。

面向航空发动机油路密封管件的高鲁棒性视觉定位算法研究

作者: 崔俊佳 刘枭 赖铭 王绍螺 蒋浩 李光耀 来源:航空制造技术 日期: 2022-04-15 人气:54
面向航空发动机油路密封管件的高鲁棒性视觉定位算法研究
航空航天行业零部件种类繁多、定制化程度高,难以进行定位夹具的开发。视觉定位技术是智能制造中的关键一环,该技术基于机器视觉确定工件位置,不需要定位夹具,能够被广泛运用于各种工况。但现有视觉定位算法只适用于少数种类的零件,泛用性不高。本文提出了一种基于YOLOv5s目标检测网络和Siamese孪生网络的新型视觉定位算法(YOLO–Siamese变化检测网络)。网络引入ConvDiff(卷积差分)模块来提升变化检测网络的特征提取效果,并采用半监督学习方法对模型进行训练。试验表明,在没有使用目标工件数据集的条件下,算法在验证集上的AP@0.5达到了99.3%,AP@0.5:0.95达到了89.6%,单帧推理时间为16.13 ms。该算法无需目标工件数据、定位精度高、运算速度快,提高了视觉定位算法的鲁棒性和泛用性。

基于激光视觉的薄板焊缝跟踪方法研究

作者: 周跃龙 陈新度 吴智恒 罗良传 陈启愉 李平 来源:机床与液压 日期: 2021-07-29 人气:175
基于激光视觉的薄板焊缝跟踪方法研究
由于示教型焊接机器人在进行汽车薄板件连续焊工艺时存在装夹误差和热变形等问题,导致焊缝实际轨迹与示教轨迹存在较大误差。为提高焊接质量,基于焊接机器人构建激光视觉焊缝检测跟踪系统,提出基于目标估计准则的焊缝跟踪算法,实时跟踪焊缝中心点三维位置变化。以传统图像处理法提取初始帧焊缝特征点,通过改进的孪生神经网络对强干扰下的焊缝特征点进行跟踪提取。通过坐标转换得到机器人基坐标系下的焊缝中心特征点三维坐标。结果表明:该算法能精确提取跟踪焊缝特征点,平均误差为0.48 mm,平均帧率为90帧/s,优于传统图像处理方法和基于相关滤波的方法,能够实现快速准确的跟踪。
    共1页/3条