碧波液压网 欢迎你,游客。 登录 注册

CNC铣刀磨损状态的大数据分析与预测方法研究

作者: 谢马军 吴永明 来源:机床与液压 日期: 2021-09-01 人气:104
CNC铣刀磨损状态的大数据分析与预测方法研究
为在铣切加工过程中预测铣刀的磨损状态以及时发现并更换将要磨钝的铣刀,以保障产品质量,运用传感器采集CNC铣床在加工过程中铣床及铣刀的振动信号数据,应用大数据方法研究CNC铣刀磨损状态的分析和预测方法。为保证铣刀磨损状态的识别精度、识别稳定性和分析模型的鲁棒性,采用小波包分解理论对铣床x、y、z三向振动信号数据进行降噪处理,提取时域特征和能量特征,筛选出与磨损状态相关性较大的34个特征。应用XGBoost算法建立铣刀磨损状态的数据分析模型,使用宏平均值评估模型性能,结合SMOTE技术对特征向量进行过采样,使各磨损状态类别样本均衡。借助公开的球头铣刀加工数据集对所提方法进行验证,实验结果表明:利用XGBoost算法能正确分析铣刀磨损状态的数据,能识别出铣刀磨损预警阶段。XGBoost算法的预测精度高、稳定性好、泛化能力强,易应...

基于1D CNN-XGBoost的滚动轴承故障诊断

作者: 张超 秦敏敏 张少飞 来源:机床与液压 日期: 2021-07-20 人气:200
基于1D CNN-XGBoost的滚动轴承故障诊断
在滚动轴承故障自动分类的研究中,使用传统的机器学习方法需要通过手动提取特征,因此特征的提取并不充分且自适应性不强。针对以上问题,提出一种一维卷积神经网络(1D CNN)结合XGBoost算法的单通道滚动轴承故障分类模型。该模型结合1D CNN和XGBoost的优势,对采集到的轴承振动信号进行数据集划分;使用训练集对1D CNN进行训练,把训练好的1D CNN模型进行保存并用来实现轴承数据特征的自动提取;将提取的特征数据集代入XGBoost算法中进行训练和分类。为验证所提
    共1页/2条