碧波液压网 欢迎你,游客。 登录 注册

基于深度LSTM残差网络的旋转机械故障诊断研究

作者: 徐敏 王平 来源:机床与液压 日期: 2021-02-13 人气:100
伴随制造加工业对可靠度与精准度的需求不断提升,及时而有效地获取旋转机械的故障信息能够保证设备的正常运行。采用深度LSTM残差网络完成旋转机械的故障诊断,主要包含3个模块:初始数据处理层、SP-LSTM残差网络信号诊断层与GAP-ELM网络下的故障分类层。该方法能够完成初始数据的深层特征发掘,利用LSTM元中的记忆与遗忘门获取故障数据的细微变化。所采用的GAP-ELM网络可规避传统Softmax方法分类准确度不高的问题,从而有效完成故障诊断。通过CWRU集完成
    共1页/1条