基于CEEMDAN和FastICA的轴承故障诊断
针对滚动轴承早期故障特征信号微弱、难以提取的特性,引入一种基于总体经验模态分解方法(CEEMDAN)和快速独立分量分析(FastICA)相结合的滚动轴承故障特征提取方法。该方法首先通过CEEMDAN和峭度、相关系数结合,完成信号的分解与重构。然后构建噪声通道,使用快速独立成分分析进行去噪分析,获得去噪信号。最后,对分离出的最佳估计信号进行包络谱分析并得到故障特征频率。该方法有效降低了噪声干扰,能够对故障特征频率进行有效识别。
采用EEMD算法与互信息法的机械故障诊断方法
提出一种总体经验模态分解(EEMD)算法与互信息法相结合的Hilbert-Huang变换机械故障诊断改进的方法.仿真与实例结果表明:EEMD算法能克服模态混叠弊端,获得具有实际物理含义的固有模态函数(IMF);互信息法能有效剔除虚假分量,使最终IMF分量更加精准且集中突显故障信号特征;所提出方法能有效表征机械故障特征,并进行精确诊断.
-
共1页/2条