碧波液压网 欢迎你,游客。 登录 注册

基于流形学习与学习矢量量化神经网络的齿轮故障诊断模型

作者: 魏永合 刘炜 杨艳君 王志伟 来源:组合机床与自动化加工技术 日期: 2021-04-29 人气:119
基于流形学习与学习矢量量化神经网络的齿轮故障诊断模型
为了提高对齿轮非平稳、非线性故障振动信号的可分性及其故障诊断的准确性,并针对其高维数据样本的特点提出一种基于流形学习与LVQ的齿轮故障诊断模型。该模型首先利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)方法进行齿轮故障振动信号的分解,得到一系列固有模式函数(Intrinsic Model Function,IMF)分量。接下来对含有主要故障信息的IMF分量进行特征提取和选择并构造高维观测样本,再用流形学习等距特征映射(ISOMAP)算法对初步的高维观测样本故障特征进行进一步的提取并对特征属性的数量进行压缩,在保留齿轮故障特征的整体几何结构信息的同时降低了特征数据的复杂度,增强了齿轮故障模式识别的分类性能。最后通过学习矢量量化神经网络(Learning Vector Quantization,LVQ)根据样本的特征将样本划分到一定的类别中去从而实现模式识别。通过比较实...
    共1页/1条