基于多尺度基本熵和参数优化KELM的电机轴承故障诊断
针对信号特征提取中多尺度样本熵(MSE)与多尺度排列熵(MPE)算法计算效率差的问题,提出一种基于多尺度基本熵(MBSE)和参数优化核极限学习机(KELM)的电机轴承诊断新方法。该方法先通过MBSE来提取所拾取滚动轴承振动信号的特征信息,同时对比分析了多尺度基本熵、多尺度样本熵与多尺度排列熵的计算效率。最后利用KELM分类器对滚动轴承的不同状态进行判定,并通过人工鱼群算法(AFSA)对KELM的关键影响参数进行寻优。实验结果表明所述方法能够对滚动轴承的运行状态进行有效识别。
-
共1页/1条