基于LMD与多重分形寻优的往复压缩机故障特征识别方法
针对往复压缩机振动信号的非平稳和非线性特性,多重分形广义谱是一种简便、快速有效的特征参数提取方法;但其对噪声敏感,使得谱值波动,部分故障类间特征可分性差。利用经小波降噪后的优化LMD算法,并结合相关系数提取PF主分量以突出状态主信息,将多尺度整数寻优观点引入广义维,基于最佳可分性角度计算状态间最大平均距离,构造广义维数特征矩阵;通过SVM与增量学习K邻近(IKNNModel)统计算法训练和识别样本,对比证明该法能提高故障特征类间可分性和识别准确性。
-
共1页/1条