基于改进LFQPSO优化MRVM的轴向柱塞泵故障诊断
针对传统粒子群优化算法以准确率或误判率作为适应度函数耗时长和轴向柱塞泵故障机制较为复杂的问题,提出一种基于改进适应度函数的Lévy飞行量子粒子群优化(QPSO)多分类相关向量机(MRVM)的轴向柱塞泵概率性智能软状态判别方法。为了克服人为设定核参数不精确、效率低等缺点,采用基于Lévy飞行的QPSO搜索MRVM的最优核参数;为了缩短寻优时间,将样本间余弦相似度作为寻优算法的适应度函数,并利用UCI机器学习标准数据集进行仿真来验证改进后优化方法的
QPSO匹配的FIE随机共振轴承故障诊断
针对随机共振(stochastic resonance,简称SR)系统处理复杂信号的局限性以及参数选择的盲目性,提出了一种基于频域信息交换(frequency information exchange,简称FIE)的量子粒子群自适应参数匹配随机共振方法。首先,采用FIE将高频特征信号的频域幅值信息交换到对应的基准低频处;然后,根据基准频率特征采用量子粒子群优化(quantum particle swarm optimization,简称QPSO)算法优化SR系统参数;最后,对振动信号进行随机共振处理。滚动轴承实测信号的分析表明,该方法可以消除随机共振对频段的局限性,避免系统参数选择的盲目性,使随机共振更适用于强噪声背景下较高频段的故障信号检测。
-
共1页/2条