利用共形几何代数的平面并联机构位置正解求解方法
提出了一种基于共形几何代数(CGA)求解所有1140种由转动副和移动副任意组合而成的平面并联机构的位置正解解析法。应用组合数学理论阐明了由转动副和移动副组成的平面并联机构共有1140种类型;根据各支链的长度约束条件,建立了涵盖1140种平面并联机构类型的等效机构模型;应用共形几何代数框架下的刚体平移和旋转运动表示,建立了等效机构模型的位置正解数学模型,只需通过简单的线性消元,即可推导出该位置正解问题的符号形式一元六次输入输出方程,从而可快速获得该问题的全部解析解,无增根也无漏根。基于计算机代数计算系统Maple16进行编程,通过2个数字实例验证了方法的正确性和有效性。
三种无内部奇异的平面冗余驱动并联机构及其性能分析
提出了4-RPR型、4-RRR型、4-PRR型等三种新型无内部奇异的平面三自由度冗余驱动并联机构。运用螺旋理论分析了各机构的运动自由度,讨论了工作空间内部的非奇异性及其参数条件,建立了运动学模型,通过数值方法获得了各机构的定姿态工作空间,并通过数值仿真分析了各机构的可操作度性能指标,结果表明这三种并联机构的工作空间内部均无奇异,且具有良好的运动灵活性。
-
共1页/2条