工业机器人动力学参数的改进遗传算法辨识
为了准确辨识出六自由度工业机器人的动力学参数,提出一种基于改进遗传算法的参数辨识方法。构建牛顿-欧拉机器人动力学模型,明确反映各关节力矩与动力学参数的函数关系;通过改进遗传算法获取优化激励轨迹,并对机器人进行动力学参数的整体辨识,减少关节间耦合作用影响,避免多次识别实验环境不一致而产生的误差。最后采用最小二乘法计算机器人的动力学参数,解决因初始值选择不合理而导致辨识精度受限的问题。实验结果表明此方法得到的最优激励轨迹能够满足约束条件,缩短优化时间,有效提高动态参数辨识的准确性和有效性。
-
共1页/1条