基于深度强化学习的AUV路径规划研究
针对三维海洋环境水下自主航行器(AUV)路径规划问题,传统的路径规划算法在三维空间中搜索时间长,对环境的依赖性强,且环境发生改变时,需要重新规划路径,不满足实时性要求。为了使AUV能够自主学习场景并做出决策,提出一种改进的Dueling DQN算法,更改了传统的网络结构以适应AUV路径规划场景。此外,针对路径规划在三维空间中搜寻目标点困难的问题,在原有的优先经验回放池基础上提出了经验蒸馏回放池,使智能体学习失败经验从而提高模型前期的收敛速度和稳定性。仿真实验结果表明所提出的算法比传统路径规划算法具有更高的实时性,规划路径更短,在收敛速度和稳定性方面都优于标准的DQN算法。
具有修正策略的改进NSGA-Ⅱ三维路径规划
针对传统多目标遗传算法存在收敛速度慢和难以得到Pareto最优解的缺点,提出了一种在三维环境下具有修正策略的改进带精英策略的非支配排序的遗传算法(NSGA-Ⅱ)。首先建立能使路径最短、能耗最小、起伏最少的多目标函数;其次加入修正算子来减少冗余的路径点,实现快速收敛;然后在选择算子中加入辅助决策算子来比较优先级,提高解的多样性。为了测试改进算法的效果,将传统算法与改进算法进行对比,改进算法得到的解更优且在不同环境下具有多个Pareto前沿分布解,其中修正算子使迭代次数减少了约63%,验证了改进算法的可行性和有效性。
-
共1页/2条