碧波液压网 欢迎你,游客。 登录 注册

优化神经网络的锂电池SOC估算

作者: 刘晓悦 魏宇册 来源:机械设计与制造 日期: 2024-08-19 人气:168
优化神经网络的锂电池SOC估算
神经网络由于强大的非线性逼近能力、不需要建立数学模型等优势可以很好地完成荷电状态(state of charge,SOC)预测。但是常用的BP神经网络也存在学习效率慢、容易陷入局部极小值的缺点。为改进传统神经网络的不足,提高预测精度,提出自适应变异粒子群优化算法(Particle Swarm Optimizition with Adaptive Mutation,AMPSO)与BP神经网络相结合的估算方法。在高级车辆仿真器(ADVISOR)仿真环境下,利用实际工况条件下的数据进行SOC估计,并与PSO、EKF、UKF方法对比,结果显示,优化后的BP神经网络预测误差在2%以内,说明所提的SOC估计方法有更好的预测准确性和稳定性。
    共1页/1条