基于类加权对抗网络的跨域旋转机械故障诊断
为解决边缘数据离群性问题,提出了一种基于类加权对抗网络的跨域旋转机械故障诊断方法。通过在源类别上附加类级权重,可以直观地表示源域和目标域之间的关系,有利于共享类别的条件对齐。进一步提出用于局部域自适应的类加权对抗网络,同时忽略源异常值,有效激励了正知识的转移,提升域自适应的效果。在CWRU数据集和一个列车转向架数据集上对该方法进行了实验,结果表明提出的方法可以有效地解决边缘数据离群性问题,提升知识迁移的效果从而提高故障诊断精度。
-
共1页/1条