碧波液压网 欢迎你,游客。 登录 注册

基于改进CNN的工业控制网络入侵检测研究

作者: 郭越 来源:机械设计与制造工程 日期: 2024-07-27 人气:163
基于改进CNN的工业控制网络入侵检测研究
现有工业控制网络入侵检测准确率不高,为此提出了一种改进CNN入侵检测方法。首先,针对传统CNN无法有效提取稀疏数据特征的问题,采用小尺寸卷积核串联的Inception模块替代传统CNN卷积层,针对网络平均池化或最大池化可能弱化或丢失关键信息的问题,采用自适应池化方式;然后,基于改进CNN构建工业控制网络入侵检测模型;最后,通过NSL-KDD数据集和天然气管道数据集对入侵检测模型的性能进行验证。结果表明,在NSL-KDD数据集上,相较于传统CNN算法和Inception-CNN,改进CNN算法的准确率可达98.50%,误报率为0.34%;在天然气管道数据集上,相较于C-SVM算法和K-means算法,改进CNN算法的准确率可达96.32%,误报率仅为1.25%。改进CNN可实现工业控制网络入侵的高精度检测。
    共1页/1条