碧波液压网 欢迎你,游客。 登录 注册

密集采样算法下的毛刺缸套外观缺陷检测

作者: 张立 肖成军 肖河曼 王卫华 来源:机械设计与制造 日期: 2024-07-13 人气:93
毛刺缸套外观缺陷种类繁多、评判标准不一,导致传统图像处理方法提取的特征信息鲁棒性较差,影响其检测效果。为了解决上述问题采用深度学习算法对缺陷位置定位,提取缺陷区域,结合图像处理算法进行定量分析,准确计算缺陷面积的大小。通过对YOLOv3算法进行优化,增加注意力空间机制、密集采样的方法对图像的不同通道的特征进行学习,并且加深特征层之间的语义信息的传递和复用。通过对比实验发现,经过改进后的深度学习算法检测精度提升4.4%,漏检率减少7.5%,并且单张图像检测时间为86ms,满足工业生产的实时性要求,结合图像处理进行定量分析,准确判别产品的缺陷。
    共1页/1条