改进辛几何模态分解的滚动轴承故障特征提取
针对滚动轴承故障冲击信号难以提取的问题,提出了一种改进辛几何模态分解(Improved Symplectic Geometry Modal Decomposition,ISGMD)滚动轴承故障特征提取方法。首先将振动信号进行辛几何模态分解,然后,利用k均值聚类的方法对分解得到的辛几何分量进行聚类,通过包络谱稀疏度指标筛选出故障特征明显的聚类辛几何分量(Cluster Symplectic Geometry Component,CSGC)并进行重构,对重构分量进行包络解调,提取出故障特征。将该方法运用到轴承故障仿真和实验信号,结果表明,这里提出的方法能够有效提取出滚动轴承故障特征。
-
共1页/1条