考虑环境复杂度的机器人路径双向蚁群规划
为了减少机器人的路径长度、提高路径平滑性,提出了基于配对双向新型蚁群算法的路径规划方法。介绍了栅格环境模型的建立方法;给出了基于改进K-means的环境复杂度聚类方法,实现了以复杂度为标准的环境分区;将环境复杂度作为新型启发信息引入到蚁群算法中,引导蚂蚁选择简单环境区域。借鉴蚂蚁的双向搜索思想,提出了配对双向搜索的新型蚁群算法,并将该算法应用于栅格环境的路径规划。经仿真验证可以看出,与传统蚁群算法、文献[12]算法比,配对双向新型蚁群算法的路径长度最短、拐点数量最少、收敛时迭代次数最少,验证了这里算法在路径规划中的优越性。
-
共1页/1条