非线性状态空间方法辨识电液伺服控制系统
针对回归神经网络辨识和建立非线性动态系统模型的问题,研究非线性状态空间描述的回归神经网络数学模型。讨论极小均方误差网络训练收敛准则,通过研究Kalman滤波估计公式中的随机变量,提出一种参数增广的回归神经网络非线性状态方程,无导数的Kalman滤波器用于增广参数估计,人工白噪声强迫网络学习,更新网络权值,避免了扩展Kalman滤波器计算Jacobian信息和基于递度学习算法收敛慢的问题。在电液伺服系统辨识建模的应用中表明,回归神经网络较好地跟踪了液压油缸压力变化,与扩展Kalman滤波估计学习算法相比,新的算法具有较快的收敛和精度。
-
共1页/1条