基于粒子群算法的火电厂热工过程模型辨识
针对火电厂热工过程对象的特点及传统模型辨识的缺陷,将粒子群算法应用于热工过程模型的辨识,并在实现方法、参数选取等方面进行了改进,提高了辨识的精确性与快速性。通过仿真数据及以某台300MW机组锅炉烟气挡板控制为对象,对再热蒸汽温度系统进行辨识,证明了该方法的有效性和可靠性。
一种改进粒子群算法及其在热工过程模型辨识中的应用
为了提高基本粒子群优化(PSO)算法的收敛性,提出了一种引入选择与变异机制的改进PSO算法。该算法选择一定范围的优秀粒子代替较差粒子,并使粒子以不同的概率变异。仿真试验表明,引入选择与变异机制使PSO算法的收敛速度得到了提高,并且有效抑制了PSO算法的早熟。将改进PSO算法应用于热工过程模型辨识,在较少的迭代次数内得到了比较精确的模型辨识结果,且具有很好的收敛性能,获得了满意的辨识效果。
-
共1页/2条