基于减聚类和T-S模糊神经网络的转台故障诊断系统
在分析转台故障类型和机理的基础上,针对故障与征兆之间的复杂非线性映射关系,提出了一种基于减聚类的T-S型模糊神经网络故障诊断方案。首先建立了转台故障底事件与征兆信号的明确对应关系,并以清晰数值形式表述专家的诊断经验;然后在减聚类算法中引入权值的概念,获得简约规则表;接着利用抗噪声训练方法训练网络,使其能够克服一定幅值内的噪声干扰;最后利用含噪声数据和测试数据分别试验。试验结果表明:该方法能有效减少诊断规则的数目,准确地实现故障识别,对噪声的容错能力强,有很强的工程实用性。
-
共1页/1条