基于分布式多子网神经网络的可燃气体分析
根据催化传感器在不同的电场条件下具有不同气体检测灵敏度的特点,介绍了采用单一的热催化传感器在不同的电场强度下,通过分布式多子网神经网络对含未知气体的可燃混合气体进行分析的新方法。应用分布式神经网络,通过训练建立了信号识别的模型,并以3种混合气体为对象进行实验,结果证明了分析方法的可行性。实验表明:该网络在泛化能力与学习速度等均优于BP和RBF网络,其多子网、自动分解任务的特点尤其适用于复杂样本的学习,具有很好的应用前景。
-
共1页/1条