基于群智优化RBF神经网络的预测控制模型研究
为了提高预测控制模型的准确度,采用RBF神经网络来完成网络流量预测,并借助群体智能算法中的混合蛙跳算法来实现模型参数的优化。首先,在建模过程中引入混合蛙跳算法。然后,将RBF神经网络权重和阈值作为青蛙个体,随机产生的多个权重和阈值组合个体构成蛙群。对蛙群进行分组,并通过不断重新分组和组内迭代的方法来获取全局最优个体,从而得到最优权重和阈值,以便确定最优的预测控制模型。经过实验证明:采用基于群体智能优化RBF神经网络的预测控制模型具有更高的准确度。
-
共1页/1条