基于时频熵特征实现异步电机机械故障诊断
针对异步电机机械故障发生概率高且缺乏有效识别方法的现象,提出基于时频熵特征的支持向量机分类模型。通过搭建故障模拟平台,实现针对正常运转、动态偏心、不对中、基座松动以及轴承故障等多类型样本的振动信号采集,提取多维度的统计指标,并利用特征选择方法降低时间复杂度,以确保诊断的准确性和及时性,最后结合支持向量机进行模型训练,以完成故障诊断。实验结果表明:文中提出的方法,在已有的样本数据中准确度较高,一致性较好,整体方法实现简单。
-
共1页/1条