碧波液压网 欢迎你,游客。 登录 注册

基于深度学习的高压输电线路防振锤检测

作者: 贾雁飞 陈广大 杨淼 邢砾云 赵立权 李帅洋 来源:机床与液压 日期: 2021-07-21 人气:142
基于深度学习的高压输电线路防振锤检测
为识别距离较近的防振锤,提出基于改进YOLOv4的防振锤自动检测方法。YOLOv4方法采用具有固定阈值的非极大值抑制方法选取检测框,较低的阈值会导致丢失高度重叠的目标,而较高的阈值则会导致更多的误检。为此,提出动态非极大值抑制方法,并将其应用于YOLOv4目标检测。该方法根据目标周围检测框的统计特性确定出动态阈值,提高边界框选择的准确性,降低高度重叠防振锤检测中的错检和漏检概率。为进一步提高防振锤检测精度,采用分段线性函数作为激活函数,克服YOLOv4算法中Leaky ReLU函数对负值处理不理想且函数曲线不平滑的问题,增强了模型的非线性表达能力。结果表明:基于改进YOLOv4的防振锤目标检测方法能够很好地检测出重叠的防振锤,且检测精度更高。
    共1页/1条