基于优化VMD和BP神经网络液压管路故障诊断研究
针对航空发动机液压管路故障信号易受噪声干扰、管路故障诊断准确率不高等问题,提出基于优化变分模态分解和BP神经网络的故障诊断方法。利用遗传算法自适应确定变分模态分解K、α的最优参数,然后采用优化后的变分模态分解方法对航空液压管路的振动信号进行分解,最后将故障特征明显的故障分量输入BP神经网络模型中进行训练和分类。结果表明:提出的基于变分模态分解与BP神经网络的航空液压管路故障诊断方法能够精准识别出航空液压管路多种不同的故障状态。
多尺度特征组合优化的航空液压管路故障诊断
为根据管路振动信号准确识别故障类型,提出一种多尺度特征组合优化的航空液压管路故障诊断方法。利用能量比值法确定变分模态分解参数,实现管路振动信号的优化分解,选取最佳模态分量信号进行重构,重构后的信号作为分析信号。选择重构信号的优化多尺度散布熵作为特征指标,构建具有代表性的特征向量集并输入到利用麻雀搜索算法优化的极限学习机网络进行训练,以实现航空液压管路的故障诊断。结果表明:利用所提方法能够准确识别航空液压管路
-
共1页/2条