基于改进LSTM的航空发动机寿命预测方法研究
发动机剩余寿命(RUL)预测时,进行数据特征提取易导致预测效率低下。为解决此问题,提出一种改进的长短期记忆(LSTM)算法模型。通过引入深度稀疏自动编码器(SDAE)完成时序数据的处理与特征提取,优化LSTM模型,改善航空发动机RUL预测效果。利用SDAE进行特征提取,构建健康因子(HI)曲线;同时考虑运行工况、故障模式和传感器3个因素,并分别训练其权重。利用LSTM模型进行发动机剩余寿命预测。利用涡扇发动机退化过程数据集C-MAPSS开展实验,并与DNN、BiLSTM、单层L
-
共1页/1条