碧波液压网 欢迎你,游客。 登录 注册

基于特征融合与HPO-RVM的滚动轴承剩余寿命预测

作者: 栗子旋 高丙朋 来源:机床与液压 日期: 2024-12-18 人气:84
基于特征融合与HPO-RVM的滚动轴承剩余寿命预测
为准确预测轴承的剩余使用寿命,提出基于特征融合与猎食者-猎物优化(HPO)算法优化相关向量机的轴承剩余寿命预测方法。提取时域、频域和时频域特征准确描述轴承的退化状态,利用综合评价指标对提取的特征进行筛选得到敏感特征集;采用核熵成分分析对敏感特征进行自适应融合,得到轴承的退化特征;构建混合核函数作为相关向量机的核函数以提高模型预测性能;最后,利用HPO算法得到混合核函数的参数,将寻优得到的参数用于寿命预测模型的训练。通过对轴承加速退化数据集进行实验,结果表明:所构建的寿命预测模型优于BP、ELM、SVM等模型,构造的混合核函数模型优于高斯核函数模型,采用的优化算法优于粒子群、遗传算法等。

基于KECA和BO-SVDD的滚动轴承早期故障检测

作者: 栗子旋 高丙朋 来源:机床与液压 日期: 2021-07-09 人气:161
基于KECA和BO-SVDD的滚动轴承早期故障检测
为了实现更早地检测出滚动轴承发生故障,提出一种基于核熵成分分析(KECA)和贝叶斯优化(BO)算法优化支持向量数据描述(SVDD)的滚动轴承早期故障检测方法。提取轴承振动信号的时域、频域特征以及小波包分解节点能量特征,组成多维特征矩阵;利用KECA对多维特征矩阵进行降维处理,进而提取有效特征;最后,选取轴承正常状态的特征指标训练模型,利用BO算法确定SVDD的惩罚因子和核宽度,进而得到早期故障检测模型。利用该模型对XJTU-SY数据集中不同工况下的轴承
    共1页/2条