快速特征系统实现算法用于环境激励下的结构模态参数识别
对特征系统实现算法(ERA)进行了改进,采用对构建的新对称矩阵进行特征值分解来替代Hrnkel矩阵的奇异值分解,提出了计算速度更快、数据储存更少的快速特征系统实现算法(FERA)。利用已知的四层框架进行数值模拟,对其施加缩尺的ElCentro地震作为未知激励,采用FERA和ERA算法对仿真所得的位移、速度和加速度分别进行模态参数识别,与理论值进行对比结果显示FERA算法适用于任何动力响应对结构进行模态参数识别,并且其运算速度可较ERA算法有较大提高。此外,FERA算法还被运用到了一座运营中的人行桥环境激励试验中,结果表明该算法同样适用于实际结构的模态参数识别。
-
共1页/1条