碧波液压网 欢迎你,游客。 登录 注册

基于VMD-SVD联合降噪和频率切片小波变换的滚动轴承故障特征提取

作者: 马增强 张俊甲 张安 阮婉莹 来源:振动与冲击 日期: 2020-12-16 人气:180
针对滚动轴承早期故障信息微弱,频率切片小波变换(FSWT)在强背景噪声中提取故障特征的不足,提出变分模态分解(VMD)奇异值分解(SVD)联合降噪与FSWT相结合的故障特征提取方法,首先利用VMD故障信号自适应分解为若干本征模态分量(IMF),通过峭度准则选择包含故障信息最丰富的IMF进行信号重构,其次利用SVD对重构信号进行再次降噪,提高信噪比。最后对降噪信号进行FSWT,凸显故障信号的时频分布信息提取故障特征。仿真信号和实际数据分析结果表明,该方法有效消除了噪声的影响,能够清晰提取故障信号的特征频率,实现滚动轴承故障的精准识别。
    共1页/1条