高速磁浮列车表面微结构气动减阻研究
为减少高速磁浮列车运行时气动阻力,降低列车能耗,开展高速磁浮列车表面微结构气动减阻仿真研究。以国内某型高速磁浮列车为研究对象,建立头车+尾车两编组仿真模型,采用瞬态SST K-Omega IDDES湍流模型开展凹球状微结构对列车气动阻力影响仿真研究。仿真结果表明在列车尾车流线型顶部区域加设凹球状微结构可降低列车整车压差阻力达12.3%,降低列车整车气动阻力3.2%。此外随着凹球状微结构沿流线型表面布置长度增加,气动阻力逐渐降低,布置长度为0.6倍流线型长度时,减阻比例达到7.6%。采用凹球状微结构来改变湍流流动特性是降低列车气动阻力的有效途径。
尾部吹气控制对城轨列车气动阻力的影响
为了探索尾部吹气控制对城市轨道交通列车气动阻力的影响,采用基于Realizable k-ε两方程模型的DDES方法模拟列车明线运行时的车身周围流场结构,分析了在尾车不同位置施加吹气控制,以及不同吹气速度的影响规律,并通过风洞试验结果验证了文章选用的数值模拟方法。研究结果表明压差阻力是列车阻力的重要来源,约占总阻力的80.1%,摩擦阻力占比约为19.9%;列车尾车设置吹气控制可显著减小列车气动阻力,且对列车压差阻力的影响远大于摩擦阻力;不同吹气方案下,尾车减阻效果最显著,其次是中间车,最高减阻率分别为27.6%和4.6%;分离点区域压力和流向涡强度是影响列车阻力的重要因素,吹气边界靠近流向涡涡核时可弱化流向涡强度,特定吹气边界控制下列车尾车压差阻力的减阻率高达31.9%;列车气动减阻率随吹气速度增大而增大,当吹气速度由0.2U增大至0.4U时,整...
-
共1页/2条