基于DMD和t-SNE的液压泵故障诊断
液压泵长期处于高压、高速的运行工况下,泵体零部件极易发生故障。实际工况下测量的振动信号往往包含着许多无关信号成分如噪声,导致传统方法难以实现故障类型的准确识别。提出一种基于动模式分解(DMD)和t分布随机近邻嵌入(t-SNE)聚类的液压泵故障模式识别方法。在泵体布置传感器进行监测获得振动信号,首先利用DMD进行分解获得表征信号本质特征的模式分量,再利用t-SNE进行降维聚类,实现不同故障类型的准确识别。通过数值仿真和试验台故障数据分析,验证了提出方法的可行性及有效性。
-
共1页/1条