GA-LSTM模型在数控机床故障预测中的应用
数控机床加工中的机床故障会影响加工精度。提出一种预测方法,在加工前预判机床的故障,避免机床在加工中发生故障影响加工精度。为了快速准确地预测数控机床故障,采用遗传算法优化长短期记忆神经网络模型,预测服役过程数控机床中可能出现的故障。采集不同状态下的故障信号作为网络训练样本,采用网络模型预测机床出现故障的状态。结果表明:GA-LSTM是一种精度较高的预测模型,在数控机床故障预测中具有良好的表现,可以避免机床出现故障而影响加工精度的情况。
-
共1页/1条