改进RBF神经网络的机械臂轨迹跟踪控制方法
机械臂是机器人系统中的重要组成部分之一,机械臂的轨迹跟踪控制是机器人执行后续工作的关键问题。由于外界干扰等不确定因素的影响,导致机械臂轨迹跟踪控制稳定性较差、精度较低、时间较长。为此,提出了改进RBF神经网络的机械臂轨迹跟踪控制方法。采用Lagrange函数,对机械臂系统动力学方程进行定义,导入关节变量的偏导数,获取标称模型运动微分方程,建立机械臂动力学模型。利用Newton算法的术语函数,获得非线性积分滑模控制方程,训练RBF神经网络,更新滑模控制补偿器,实现机械臂轨迹跟踪控制。仿真测试表明,所提方法的机械臂轨迹跟踪控制精度较高、时间较短,能够有效确保跟踪控制稳定性。
-
共1页/1条