碧波液压网 欢迎你,游客。 登录 注册

LSTM-RNN在连铸下渣预测系统中的应用

作者: 李福进 刘尚瑜 史涛 来源:机械设计与制造 日期: 2025-02-07 人气:158
LSTM-RNN在连铸下渣预测系统中的应用
针对钢包连铸过程中需要精确控制下渣时刻的问题,提出一种基于局部加权回归和长短时记忆(LSTM)神经网络模型的连铸下渣预测系统。该系统对下渣过程中采集到的信号进行处理和识别,可准确预测下渣时刻。结合某钢厂的实际生产情况,在采集到的大量钢包下渣相关参数中,提取主要特征;使用局部加权回归对数据进行过滤处理,再结合LSTM建立下渣预测模型;给出LSTM模型与ARIMA模型、RNN模型的预测结果比较。研究结果表明,长短时记忆神经网络模型的预测误差小,预测准确度较高,具有广泛的应用前景。

基于LSTM和CNN的高速柱塞泵故障诊断

作者: 魏晓良 潮群 陶建峰 刘成良 王立尧 来源:航空学报 日期: 2021-12-30 人气:98
基于LSTM和CNN的高速柱塞泵故障诊断
针对高速轴向柱塞泵容易发生空化,且目前空化故障诊断方法存在依赖手工特征提取、鲁棒性不高的问题,提出了一种基于长短时记忆(LSTM)和一维卷积神经网络(1D-CNN)相结合的空化故障诊断方法。搭建了柱塞泵故障实验台,采集柱塞泵在不同空化等级下的壳体振动信号。利用LSTM和1D-CNN搭建的分类模型对不同进口压力情况下的振动信号进行空化等级识别。实验结果表明:提出的方法能够准确地识别出4类不同的空化等级,准确率高达99.5%,同时在不附加降噪方法的情况下,具有良好的鲁棒性,在0dB信噪比的情况下,识别准确率高达87.3%。
    共1页/2条