碧波液压网 欢迎你,游客。 登录 注册

基于伪标签的弱监督迁移学习模型

作者: 侯鑫烨 董增寿 刘鑫 来源:机床与液压 日期: 2021-03-11 人气:82
基于伪标签的弱监督迁移学习模型
针对目标域标记数据少导致迁移模型泛化能力差的问题,提出基于伪标签的半监督迁移学习模型WSTLPL。卷积神经网络用于学习原始振动数据的可迁移特征,用源域数据预训练网络;利用该网络预测目标域数据类别,将分类概率最大的类标签作为数据的伪标签。根据域自适应和伪标签学习的正则化项,对神经网络的参数施加约束,以减少学习到的可迁移特征的分布差异。结果表明:与现有诊断模型相比,该迁移模型的准确率更高。
    共1页/1条