碧波液压网 欢迎你,游客。 登录 注册

基于优化CNN的航空液压管路卡箍故障诊断

作者: 窦金鑫 薛政坤 于晓光 范玉鑫 刘忠鑫 杨同光 来源:机床与液压 日期: 2021-04-07 人气:50
针对航空发动机液压卡箍-管路系统具有高度复杂性,导致卡箍振动信号存在非线性、非平稳性,从而难以提取出卡箍故障状态有效信息的问题,提出一种基于优化变分模态分解(VMD)与卷积神经网络(CNN)的卡箍智能故障诊断方法。基于优化的VMD将液压管路系统-卡箍振动信号分解成一系列固有模态函数;将含有卡箍故障信号明显的IMF输入到卷积神经网络训练模型,采用CNN进行自主特征学习和模式识别。并将该方法应用于实例中,结果表明:该方法不仅能有效地对信号进行分解,同时对不同类型的卡箍故障可达到精准识别和故障诊断。

基于VMD和LSTM模型的航空液压管路卡箍故障诊断

作者: 张小龙 汪曦 于晓光 薛政坤 崔芷宁 吕佳文 来源:液压与气动 日期: 2021-02-27 人气:190
航空发动机液压管路-卡箍系统中卡箍振动信号具有非线性和非平稳性的特点,难以从卡箍故障信号中准确识别出其故障类型。针对该问题,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)-长短时记忆(Long Short-Term Memory,LSTM)神经网络模型的智能故障诊断方法。首先,利用遗传算法对VMD的模态分量k值和惩罚因子α进行参数优化;然后,将优化后的VMD对卡箍故障振动信号进行分解处理;最后,将分解后的模态分量输入LSTM网络中进行特征学习,从而实现卡箍故障
    共1页/2条